SUBSCRIBE: RSS Feed for Spinal Cord Injury Zone Email Updates Follow Spinal Cord Injury Zone on Twitter Spinal Cord Injury Zone on Facebook

Articles Tagged: Medical Research

Scientists pinpoint molecular signal that drives and enables spinal cord repair

Published: March 17, 2016 | Category: News

lesion core after a spinal cord injuryResearchers from King’s College London and the University of Oxford have identified a molecular signal, known as ‘neuregulin-1’, which drives and enables the spinal cord’s natural capacity for repair after injury.

The findings, published today in Brain, could one day lead to new treatments which enhance this spontaneous repair mechanism by manipulating the neuregulin-1 signal.

Every year more than 130,000 people suffer traumatic spinal cord injury (usually from a road traffic accident, fall or sporting injury) and related healthcare costs are among the highest of any medical condition – yet there is still no cure or adequate treatment. Continue Reading »

Study Identifies Specific Gene Network That Promotes Nervous System Repair

Published: February 18, 2016 | Category: News

UCLAFindings by UCLA-led collaboration are an early step toward potential treatments for injuries to the central nervous system

Newswise — Whether or not nerve cells are able to regrow after injury depends on their location in the body. Injured nerve cells in the peripheral nervous system, such as those in the arms and legs, can recover and regrow, at least to some extent. But nerve cells in the central nervous system — the brain and spinal cord — can’t recover at all. Continue Reading »

Spinal injury and ‘biorobotic control’ of the bladder

Published: February 16, 2016 | Category: News

bladder-control-credit-the-districtThere are many challenges facing people with spinal cord injury – and walking again is often the least of their problems. Cambridge research could help patients take control of their lives once more.

Spinal cord injury is, in many respects, a testosterone disease, says Professor James Fawcett.

What he means by this is that four out of five spinal cord injuries happen to men, and the most common age group is early adulthood. “Men are not good at assessing risk at that age,” he says. “Females are much more sensible.” Continue Reading »

One Small Step

Published: January 25, 2016 | Category: News | Spinal Cord Injury: ,

Darek FidykaA paraplegic undergoes pioneering surgery.

When a spinal cord is damaged, location is destiny: the higher the injury, the more severe the effects. The spine has thirty-three vertebrae, which are divided into five regions—the coccygeal, the sacral, the lumbar, the thoracic, and the cervical. The nerve-rich cord traverses nearly the entire length of the spine. The nerves at the bottom of the cord are well buried, and sometimes you can walk away from damage to these areas. In between are insults to the long middle region of the spine, which begins at the shoulders and ends at the midriff. Continue Reading »

Groundbreaking device being tested by VA may put end to pressure ulcers

Published: March 19, 2015 | Category: News

GRC_VA_multisensing-device-projectHelps detect the earliest signs of ulcer formation

Pressure ulcers (commonly known as bed sores) are one of the most troublesome and painful complications for patients during a long hospital stay, but a joint project between the Department of Veterans Affairs (VA) Center for Innovation and General Electric (GE) Global Research may one day make pressure ulcers a thing of the past.

A multi-disciplinary team of scientists have combined an array of sensing and analytical tools, including motion analysis, thermal profiling, image classification/segmentation, 3-D object reconstruction and vapor detection into a single medical sensing handheld probe to assess and monitor the progression of bed sores or pressure ulcers. Continue Reading »

Optogenetics enables muscle contraction control

Published: June 30, 2014 | Category: News

Optogenetics muscle controlNeuroscientists at the Massachusetts Institute of Technology (MIT; Cambridge, MA) have shown that they can control muscle movement by applying optogenetics—a technique that enables control of neurons’ electrical impulses with light—to the spinal cords of animals that are awake and alert.

Led by MIT Institute Professor Emilio Bizzi, the researchers studied mice in which a light-sensitive protein that promotes neural activity was inserted into a subset of spinal neurons. When the researchers shone blue light on the animals’ spinal cords, their hind legs were completely but reversibly immobilized. The work offers a new approach to studying the complex spinal circuits that coordinate movement and sensory processing, the researchers say. Continue Reading »

Spinal Cord Injury: Promising Research to Restore Hand Function at UCLA

Published: April 30, 2014 | Category: News

Research to Restore Hand FunctionDaniel Lu, MD, and Reggie Edgerton, MD, recently received a five-year grant to explore new therapies for patients with spinal cord injuries from the National Institute of Biomedical Imaging and Bioengineering. Dr. Lu and Dr. Edgerton are researchers at the University of California, Los Angeles and clinicians at the UCLA Spine Center.

“A majority of spinal cord patients have compromised hand function [which] is often cited as [having] the highest impact of all lost functions after injury by those living with spinal cord injury,” says Dr. Lu. “Thus, the NIH grant is funded to study hand function after severe cervical spinal cord injury.” Continue Reading »

Science sees future beyond Paralympics

Published: March 5, 2014 | Category: News

mens 200 metre at 2008 Beijing Paralympic GamesPARIS – Imagine a future with no sporting events for paralysed people. A future in which there is no need, as all the would-be competitors will have been cured.

This scenario, laughable just a few decades ago, is no longer far-fetched, experts say.

Bit by bit, important progress is being made in understanding and tackling aspects of paralysis. Continue Reading »

U.S. team conducts study using new cell technique in monkeys

Published: January 30, 2014 | Category: News

A research team at Harvard University has conducted a preliminary study on monkeys paralyzed by spinal cord injuries using a newly found technique for turning specialized cells into multipurpose ones that behave like embryonic stem cells, one of the team members said Thursday.

The same team is also experimenting with human cells in the hope of generating so-called STAP cells, which can turn into any type of body tissue, according to Charles Vacanti, a Harvard professor who co-authored papers on STAP cells published in the journal Nature on Wednesday. Continue Reading »

Drug may reduce chronic pain for spinal cord injuries

Published: October 29, 2013 | Category: News

West Lafayette, Indiana – Researchers have discovered that a known neurotoxin may cause chronic pain in people who suffer from paralysis, and a drug that has been shown to remove the toxin might be used to treat the pain.

The toxin, called acrolein, is produced in the body after nerve cells are injured, triggering a cascade of biochemical events thought to worsen the injury’s severity. Continue Reading »

Do NOT follow this link or you will be banned from the site!