SUBSCRIBE: RSS Feed for Spinal Cord Injury Zone Email Updates Follow Spinal Cord Injury Zone on Twitter Spinal Cord Injury Zone on Facebook

Articles Tagged: Neurons

Lab-Grown Neurons Could Help Heal Spinal Injuries and Restore Movement

Published: April 26, 2017 | Category: Featured News Videos

Researchers grew human spinal cord neurons from stem cells and injected them into healthy mice, where they successfully connected with other neurons. Continue Reading »

Molecule shown to repair damaged axons

Published: March 8, 2017 | Category: News

Discovery could be key to treating brain and spinal cord injury

A foray into plant biology led one researcher to discover that a natural molecule can repair axons, the thread-like projections that carry electrical signals between cells. Axonal damage is the major culprit underlying disability in conditions such as spinal cord injury and stroke.

Andrew Kaplan, a PhD candidate at the Montreal Neurological Institute and Hospital of McGill University, was looking for a pharmacological approach to axon regeneration, with a focus on 14-3-3, a family of proteins with neuroprotective functions that have been under investigation in the laboratory of Dr. Alyson Fournier, professor of neurology and neurosurgery and senior author on the study. Continue Reading »

‘Spinal tap’ saving crash victims from life in a wheelchair: Breakthrough nerve-preserving procedure could spare people from paralysis

Published: September 24, 2016 | Category: News

Steven Dowd after ISCoPESpinal injury victims could be spared from paralysis thanks to a breakthrough nerve- preserving procedure developed by British doctors. It is the first treatment to tackle inflammation of the spinal cord, which can occur in the hours and days after an accident, causing irreversible damage.

Given in these crucial hours, the ‘spinal tap’ procedure works by reducing the pressure build-up within the spinal column caused by swelling and so preserves vital nerve function. Continue Reading »

Study says stem cell treatment can aid recovery of spinal injuries

Published: August 23, 2016 | Category: News

stem-cellStem Cell treatment or the Human Embryonic Stem Cells (HESC) is effective in the replacement of damaged neurons, re-establishment of lost axonal connections, and providing of neuro-protective factors to allow the healing and recovery of spinal cord injury, revealed a study.

Stem Cell treatment or the Human Embryonic Stem Cells (HESC) is effective in the replacement of damaged neurons, re-establishment of lost axonal connections, and providing of neuro-protective factors to allow the healing and recovery of spinal cord injury, revealed a study. Continue Reading »

Researchers discover role of protein in neuron sprouting

Published: April 19, 2016 | Category: Featured News

Kentucky Spinal Cord Injury Research CenterRole of adaptor protein CD2AP in neuron sprouting discovered by UofL researchers could lead to therapies for Alzheimer’s disease, stroke recovery and spinal cord injury

University of Louisville researchers have discovered that a protein previously known for its role in kidney function also plays a significant role in the nervous system. In an article featured in the April 13 issue of The Journal of Neuroscience, they show that the adaptor protein CD2AP is a key player in a type of neural growth known as collateral sprouting. Continue Reading »

Spasticity : two potential therapeutic avenues

Published: March 17, 2016 | Category: Information

neurone_webFollowing spinal cord injury, most patients experience an exaggeration of muscle tone called spasticity, which frequently leads to physical disability.

A team at the Institut de Neurosciences de la Timone (CNRS/Aix-Marseille Université) has just identified one of the molecular mechanisms responsible for this phenomenon. It has also proposed two therapeutic solutions that have proved conclusive in animals, one of which will be tested during phase II clinical trials as early as this year. This work, published in Nature Medicineon 14 March 2016, thus opens new therapeutic avenues to reduce this physical disability.

Twelve million people throughout the world suffer from a motor disorder called spasticity. Continue Reading »

Engineering a spinal cord repair kit

Published: February 29, 2016 | Category: News

New, multifunctional fibers to help repair nerve damage or deliver treatment for mental, neurological disorders

Continue Reading »

Scientists Connect Neurons in the Lab for the First Time

Published: February 9, 2016 | Category: News

Scientists Connect Neurons in the LabInjuries to the central nervous system — the brain and spinal cord — are particularly devastating because the body doesn’t regenerate neurons to repair connections between vital circuits and restore function. In other words, the damage is permanent or even fatal.

A variety of early studies in animals and humans indicate the field of neural regeneration research is advancing. A 20-year-old man in Naples, Florida recently enrolled in the first clinical trial to assess the ability of stem cells to repair spinal cord injuries. But, a team of scientists from McGill University in Montreal, Canada, are working an entirely different method to inject hope into an otherwise bleak prognosis. Continue Reading »

Discovery helps explain what guides neurons to connect

Published: November 19, 2015 | Category: News

nell2-discoveryIt’s a wonder of nature – and a darned good thing – that amid many billions of similar cells in the brain and spinal cord, neurons can extend their tendrillous axons to exactly the right place to form connections. Otherwise we wouldn’t move, sense or think properly, if at all. In a new study in the journal Science, researchers report a discovery that helps to explain how axons manage to find their way across the midline of the spinal cord.

The findings contribute toward solving the basic mystery of axon guidance, but they might also advance scientists a little closer to achieving the medical aspiration of repairing damage in the central nervous system. Continue Reading »

Researchers discovers ways to regenerate corticospinal tract axons

Published: July 2, 2015 | Category: News

sagittal section shows regineratinResearchers at the Hong Kong University of Science and Technology (HKUST) have found a way to stimulate the growth of axons, which may spell the dawn of a new beginning on chronic SCI treatments.

Chronic spinal cord injury (SCI) is a formidable hurdle that prevents a large number of injured axons from crossing the lesion, particularly the corticospinal tract (CST). Patients inflicted with SCI would often suffer a loss of mobility, paralysis, and interferes with activities of daily life dramatically. While physical therapy and rehabilitation would help the patients to cope with the aftermath, axonal regrowth potential of injured neurons was thought to be intractable. Continue Reading »